MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Early prediction of acute kidney injury in critical care setting using clinical notes and structured multivariate physiological measurements

Author(s)
Sun, M; Baron, J; Dighe, A; Szolovits, P; Wunderink, RG; Isakova, T; Luo, Y; ... Show more Show less
Thumbnail
DownloadPublished version (274.4Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution NonCommercial License 4.0 https://creativecommons.org/licenses/by-nc/4.0/
Metadata
Show full item record
Abstract
© 2019 International Medical Informatics Association (IMIA) and IOS Press. The onset of acute kidney injury (AKI) during an intensive care unit (ICU) admission is associated with increased morbidity and mortality. Developing novel methods to identify early AKI onset is of critical importance in preventing or reducing AKI complications. We built and applied multiple machine learning models to integrate clinical notes and structured physiological measurements and estimate the risk of new AKI onset using the MIMIC-III database. From the clinical notes, we generated clinically meaningful word representations and embeddings. Four supervised learning classifiers and mixed-feature deep learning architecture were used to construct prediction models. The best configurations consistently utilized both structured and unstructured clinical features and yielded competitive AUCs above 0.83. Our work suggests that integrating structured and unstructured clinical features can be effectively applied to assist clinicians in identifying the risk of incident AKI onset in critically-ill patients upon admission to the ICU.
Date issued
2019-08-21
URI
https://hdl.handle.net/1721.1/136432
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Journal
Studies in Health Technology and Informatics

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.