MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Investigating the factors that influence resistance rise of PIM-1 membranes in nonaqueous electrolytes

Author(s)
Gigli, Matteo; Kowalski, Jeffrey A; Neyhouse, Bertrand J; D'Epifanio, Alessandra; Brushett, Fikile R; Licoccia, Silvia; ... Show more Show less
Thumbnail
DownloadPublished version (860.8Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
© 2019 The Authors As redox active macromolecules are introduced to the materials repertoire of redox flow batteries (RFBs), nanoporous membranes, such as polymers of intrinsic microporosity (PIMs), are emerging as a viable separation strategy. Although their selectivity has been demonstrated, PIM-based membranes suffer from time-dependent resistance rise in nonaqueous electrolytes. Here, we study this phenomenon as a function of membrane thickness, electrolyte flow rate, and solvent washing using a diagnostic flow cell configuration. We find that the rate and magnitude of resistance rise can be significantly reduced through the combination of low electrolyte flow rate and solvent prewash. Further, our results indicate that, since the increase is not associated with irreversible chemical and structural changes, the membrane performance can be recovered via ex-situ or in-situ solvent washes.
Date issued
2019
URI
https://hdl.handle.net/1721.1/136446
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Journal
Electrochemistry Communications
Publisher
Elsevier BV

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.