MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dissipative particle dynamics for directed self-assembly of block copolymers

Author(s)
Huang, Hejin; Alexander-Katz, Alfredo
Thumbnail
DownloadSubmitted version (1.619Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© 2019 Author(s). The dissipative particle dynamics (DPD) simulation method has been shown to be a promising tool to study self-assembly of soft matter systems. In particular, it has been used to study block copolymer (BCP) self-assembly. However, previous parameterizations of this model are not able to capture most of the rich phase behaviors of BCPs in thin films nor in directed self-assembly (chemoepitaxy or graphoepitaxy). Here, we extend the applicability of the DPD method for BCPs to make it applicable to thin films and directed self-assembly. Our new reparameterization not only is able to reproduce the bulk phase behavior but also manages to predict thin film structures obtained experimentally from chemoepitaxy or graphoepitaxy. A number of different complex structures, such as bilayer nanomeshes, 90° bend structures, circular cylinders/lamellae and Frank-Kasper phases directed by trenches, and post arrays or chemically patterned substrates, have all been reproduced in this work. This reparameterized DPD model should serves as a powerful tool to predict BCP self-assembly, especially in some complex systems where it is difficult to implement self-consistent field theory.
Date issued
2019
URI
https://hdl.handle.net/1721.1/136495
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Journal
The Journal of Chemical Physics
Publisher
AIP Publishing

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.