MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The biochemical basis of microRNA targeting efficacy

Author(s)
McGeary, Sean E; Lin, Kathy S; Shi, Charlie Y; Pham, Thy M; Bisaria, Namita; Kelley, Gina M; Bartel, David P; ... Show more Show less
Thumbnail
DownloadAccepted version (3.046Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
© 2019 American Association for the Advancement of Science. All rights reserved. MicroRNAs (miRNAs) act within Argonaute proteins to guide repression of messenger RNA targets. Although various approaches have provided insight into target recognition, the sparsity of miRNA-target affinity measurements has limited understanding and prediction of targeting efficacy. Here, we adapted RNA bind-n-seq to enable measurement of relative binding affinities between Argonaute-miRNA complexes and all sequences ≤12 nucleotides in length. This approach revealed noncanonical target sites specific to each miRNA, miRNA-specific differences in canonical target-site affinities, and a 100-fold impact of dinucleotides flanking each site. These data enabled construction of a biochemical model of miRNA-mediated repression, which was extended to all miRNA sequences using a convolutional neural network. This model substantially improved prediction of cellular repression, thereby providing a biochemical basis for quantitatively integrating miRNAs into gene-regulatory networks.
Date issued
2019
URI
https://hdl.handle.net/1721.1/136496
Department
Howard Hughes Medical Institute; Whitehead Institute for Biomedical Research; Massachusetts Institute of Technology. Department of Biology; Massachusetts Institute of Technology. Computational and Systems Biology Program
Journal
Science
Publisher
American Association for the Advancement of Science (AAAS)

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.