MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Exciting black hole modes via misaligned coalescences. I. Inspiral, transition, and plunge trajectories using a generalized Ori-Thorne procedure

Author(s)
Apte, Anuj; Hughes, Scott A
Thumbnail
DownloadPublished version (760.0Kb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
© 2019 American Physical Society. The last gravitational waves emitted in the coalescence of two black holes are quasinormal ringing modes of the merged remnant. In general relativity, the mass and the spin of the remnant black hole uniquely determine the frequency and damping time of each radiated mode. The amplitudes of these modes are determined by the mass ratio of the system and the geometry of the coalescence. This paper is part I of an analysis that aims to compute the "excitation factors" associated with misaligned binary black hole coalescence. To simplify the analysis, we consider a large mass-ratio system consisting of a nonspinning body of mass μ that inspirals on a quasicircular trajectory into a Kerr black hole of mass M and spin parameter a, with μ/M1. Our goal is to understand how different modes are excited as a function of the black hole spin a and an angle I which characterizes the misalignment of the orbit with the black hole's spin axis. Though the large mass-ratio limit does not describe the binaries that are being observed by gravitational-wave detectors today, this limit makes it possible to quickly and easily explore the binary parameter space, and to develop insight into how the system's late ringing waves depend on the binary's geometry. In this first analysis, we develop the worldline which the small body follows as it inspirals and then plunges into the large black hole. Our analysis generalizes earlier work by Ori and Thorne to describe how a nonequatorial circular inspiral transitions into a plunging trajectory that falls into the black hole. The worldlines which we develop here are used in part II as input to a time-domain black hole perturbation solver. This solver computes the gravitational waves generated by such inspirals and plunges, making it possible to characterize the modes which the coalescence excites.
Date issued
2019
URI
https://hdl.handle.net/1721.1/136505
Department
Massachusetts Institute of Technology. Department of Physics; MIT Kavli Institute for Astrophysics and Space Research
Journal
Physical Review D
Publisher
American Physical Society (APS)

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.