Show simple item record

dc.contributor.authorFeige, Uriel
dc.contributor.authorGamarnik, David
dc.contributor.authorNeeman, Joe
dc.contributor.authorRácz, Miklós Z
dc.contributor.authorTetali, Prasad
dc.date.accessioned2021-10-27T20:35:48Z
dc.date.available2021-10-27T20:35:48Z
dc.date.issued2020
dc.identifier.urihttps://hdl.handle.net/1721.1/136529
dc.description.abstract© 2019 Wiley Periodicals, Inc. Consider algorithms with unbounded computation time that probe the entries of the adjacency matrix of an n vertex graph, and need to output a clique. We show that if the input graph is drawn at random from (Formula presented.) (and hence is likely to have a clique of size roughly (Formula presented.)), then for every δ<2 and constant ℓ, there is an α<2 (that may depend on δ and ℓ) such that no algorithm that makes nδ probes in ℓ rounds is likely (over the choice of the random graph) to output a clique of size larger than (Formula presented.).
dc.language.isoen
dc.publisherWiley
dc.relation.isversionof10.1002/RSA.20896
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.sourcearXiv
dc.titleFinding cliques using few probes
dc.typeArticle
dc.contributor.departmentSloan School of Management
dc.relation.journalRandom Structures and Algorithms
dc.eprint.versionOriginal manuscript
dc.type.urihttp://purl.org/eprint/type/JournalArticle
eprint.statushttp://purl.org/eprint/status/NonPeerReviewed
dc.date.updated2021-04-14T14:59:12Z
dspace.orderedauthorsFeige, U; Gamarnik, D; Neeman, J; Rácz, MZ; Tetali, P
dspace.date.submission2021-04-14T14:59:13Z
mit.journal.volume56
mit.journal.issue1
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record