MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Lignin-KMC: A Toolkit for Simulating Lignin Biosynthesis

Author(s)
Orella, Michael J; Gani, Terry ZH; Vermaas, Josh V; Stone, Michael L; Anderson, Eric M; Beckham, Gregg T; Brushett, Fikile R; Román-Leshkov, Yuriy; ... Show more Show less
Thumbnail
DownloadSubmitted version (1.052Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© 2019 American Chemical Society. Lignin is an abundant biopolymer of phenylpropanoid monomers that is critical for plant structure and function. Based on the abundance of lignin in the biosphere and interest in lignin valorization, a more comprehensive understanding of lignin biosynthesis is imperative. Here, we present an open-source software toolkit, Lignin-KMC, that combines kinetic Monte Carlo and first-principles calculations of radical coupling events to model lignin biosynthesis in silico. Lignification is simulated using the Gillespie algorithm with rates derived from density functional theory calculations of individual fragment couplings. Using this approach, we confirm experimental findings regarding the impact of lignification conditions on the polymer structure such as (1) the positive correlation between sinapyl alcohol fraction and depolymerization yield and (2) the primarily benzodioxane linked structure of C-lignin. Additionally, we identify the in planta monolignol supply rate as a possible control mechanism for lignin biosynthesis based on evolutionary stresses. These examples not only highlight the robustness of our modeling framework but also motivate future studies of new lignin types, unexplored monolignol chemistries, and lignin structure predictions, all with an overarching aim of developing a more comprehensive molecular understanding of native lignin, which, in turn, can advance the biological and chemistry communities interested in this important biopolymer.
Date issued
2019
URI
https://hdl.handle.net/1721.1/136531
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Journal
ACS Sustainable Chemistry & Engineering
Publisher
American Chemical Society (ACS)

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.