MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An entropy-based bound for the computational complexity of a switched system

Author(s)
Legat, Benoit; Parrilo, Pablo A; Jungers, Raphael M
Thumbnail
DownloadAccepted version (649.9Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© 2019 IEEE. The joint spectral radius (JSR) of a set of matrices characterizes the maximal asymptotic growth rate of an infinite product of matrices of the set. This quantity appears in a number of applications including the stability of switched and hybrid systems. A popular method used for the stability analysis of these systems searches for a Lyapunov function with convex optimization tools. We analyze the accuracy of this method for constrained switched systems, a class of systems that has attracted increasing attention recently. We provide a new guarantee for the upper bound provided by the sum of squares implementation of the method. This guarantee relies on the $p$-radius of the system and the entropy of the language of allowed switching sequences. We end this paper with a method to reduce the computation of the JSR of low-rank matrices to the computation of the constrained JSR of matrices of small dimension.
Date issued
2019
URI
https://hdl.handle.net/1721.1/136543
Journal
IEEE Transactions on Automatic Control
Publisher
Institute of Electrical and Electronics Engineers (IEEE)

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.