MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Photodissociation transition states characterized by chirped pulse millimeter wave spectroscopy

Author(s)
Prozument, Kirill; Baraban, Joshua H; Changala, P Bryan; Park, G Barratt; Shaver, Rachel G; Muenter, John S; Klippenstein, Stephen J; Chernyak, Vladimir Y; Field, Robert W; ... Show more Show less
Thumbnail
DownloadPublished version (1.033Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
© 2020 National Academy of Sciences. All rights reserved. The 193-nm photolysis of CH2CHCN illustrates the capability of chirped-pulse Fourier transform millimeter-wave spectroscopy to characterize transition states. We investigate the HCN, HNC photofragments in highly excited vibrational states using both frequency and intensity information. Measured relative intensities of J = 1–0 rotational transition lines yield vibrational-level population distributions (VPD). These VPDs encode the properties of the parent molecule transition state at which the fragment molecule was born. A Poisson distribution formalism, based on the generalized Franck–Condon principle, is proposed as a framework for extracting information about the transition-state structure from the observed VPD. We employ the isotopologue CH2CDCN to disentangle the unimolecular 3-center DCN elimination mechanism from other pathways to HCN. Our experimental results reveal a previously unknown transition state that we tentatively associate with the HCN eliminated via a secondary, bimolecular reaction.
Date issued
2020
URI
https://hdl.handle.net/1721.1/136575
Department
Massachusetts Institute of Technology. Department of Chemistry
Journal
Proceedings of the National Academy of Sciences of the United States of America
Publisher
Proceedings of the National Academy of Sciences

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.