Show simple item record

dc.contributor.authorKim, Ju-Lee
dc.contributor.authorShin, Sug Woo
dc.contributor.authorTemplier, Nicolas
dc.date.accessioned2022-02-11T18:26:00Z
dc.date.available2021-10-27T20:36:08Z
dc.date.available2022-02-11T18:26:00Z
dc.date.issued2020
dc.identifier.issn1090-2082
dc.identifier.urihttps://hdl.handle.net/1721.1/136587.2
dc.description.abstract© 2019 The Authors We establish properties of families of automorphic representations as we vary prescribed supercuspidal representations at a given finite set of primes. For the tame supercuspidals constructed by J.-K. Yu we prove the limit multiplicity property with error terms. Thereby we obtain a Sato-Tate equidistribution for the Hecke eigenvalues of these families. The main new ingredient is to show that the orbital integrals of matrix coefficients of tame supercuspidal representations with increasing formal degree on a connected reductive p-adic group tend to zero uniformly for every noncentral semisimple element.en_US
dc.language.isoen
dc.publisherElsevier BVen_US
dc.relation.isversionofhttps://dx.doi.org/10.1016/J.AIM.2019.106955en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceElsevieren_US
dc.titleAsymptotic behavior of supercuspidal representations and Sato-Tate equidistribution for familiesen_US
dc.typeArticleen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.relation.journalAdvances in Mathematicsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2021-05-24T14:43:10Z
dspace.orderedauthorsKim, J-L; Shin, SW; Templier, Nen_US
dspace.date.submission2021-05-24T14:43:12Z
mit.journal.volume362en_US
mit.licensePUBLISHER_CC
mit.metadata.statusPublication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version