MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Starling: A Scalable Query Engine on Cloud Functions

Author(s)
Perron, Matthew; Castro Fernandez, Raul; DeWitt, David; Madden, Samuel
Thumbnail
DownloadSubmitted version (1.537Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© 2020 Association for Computing Machinery. Much like on-premises systems, the natural choice for running database analytics workloads in the cloud is to provision a cluster of nodes to run a database instance. However, analytics workloads are often bursty or low volume, leaving clusters idle much of the time, meaning customers pay for compute resources even when underutilized. The ability of cloud function services, such as AWS Lambda or Azure Functions, to run small, fine granularity tasks make them appear to be a natural choice for query processing in such settings. But implementing an analytics system on cloud functions comes with its own set of challenges. These include managing hundreds of tiny stateless resource-constrained workers, handling stragglers, and shuffling data through opaque cloud services. In this paper we present Starling, a query execution engine built on cloud function services that employs a number of techniques to mitigate these challenges, providing interactive query latency at a lower total cost than provisioned systems with low-to-moderate utilization. In particular, on a 1TB TPC-H dataset in cloud storage, Starling is less expensive than the best provisioned systems for workloads when queries arrive 1 minute apart or more. Starling also has lower latency than competing systems reading from cloud object stores and can scale to larger datasets.
Date issued
2020
URI
https://hdl.handle.net/1721.1/136620
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Journal
Proceedings of the ACM SIGMOD International Conference on Management of Data
Publisher
ACM

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.