MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Conducting Non-adaptive Experiments in a Live Setting: A Bayesian Approach to Determining Optimal Sample Size

Author(s)
Sudarsanam, Nandan; Chandran, Ramya; Frey, Daniel D
Thumbnail
DownloadPublished version (661.6Kb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
© 2019 by ASME. This research studies the use of predetermined experimental plans in a live setting with a finite implementation horizon. In this context, we seek to determine the optimal experimental budget in different environments using a Bayesian framework. We derive theoretical results on the optimal allocation of resources to treatments with the objective of minimizing cumulative regret, a metric commonly used in online statistical learning. Our base case studies a setting with two treatments assuming Gaussian priors for the treatment means and noise distributions. We extend our study through analytical and semi-analytical techniques which explore worst-case bounds, the presence of unequal prior distributions, and the generalization to k treatments. We determine theoretical limits for the experimental budget across all possible scenarios. The optimal level of experimentation that is recommended by this study varies extensively and depends on the experimental environment as well as the number of available units. This highlights the importance of such an approach which incorporates these factors to determine the budget.
Date issued
2020
URI
https://hdl.handle.net/1721.1/136664
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Journal of Mechanical Design
Publisher
ASME International

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.