Show simple item record

dc.contributor.authorPantazis, Dimitrios
dc.contributor.authorAdler, Amir
dc.date.accessioned2021-12-09T19:03:39Z
dc.date.available2021-10-28T12:07:28Z
dc.date.available2021-12-09T19:03:39Z
dc.date.issued2021-06-22
dc.identifier.issn1424-8220
dc.identifier.urihttps://hdl.handle.net/1721.1/136674.2
dc.description.abstractWe present a deep learning solution to the problem of localization of magnetoencephalography (MEG) brain signals. The proposed deep model architectures are tuned to single and multiple time point MEG data, and can estimate varying numbers of dipole sources. Results from simulated MEG data on the cortical surface of a real human subject demonstrated improvements against the popular RAP-MUSIC localization algorithm in specific scenarios with varying SNR levels, inter-source correlation values, and number of sources. Importantly, the deep learning models had robust performance to forward model errors resulting from head translation and rotation and a significant reduction in computation time, to a fraction of 1 ms, paving the way to real-time MEG source localization.en_US
dc.publisherMultidisciplinary Digital Publishing Instituteen_US
dc.relation.isversionofhttp://dx.doi.org/10.3390/s21134278en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceMultidisciplinary Digital Publishing Instituteen_US
dc.titleMEG Source Localization Via Deep Learningen_US
dc.typeArticleen_US
dc.identifier.citationSensors 21 (13): 4278 (2021)en_US
dc.contributor.departmentMcGovern Institute for Brain Research at MITen_US
dc.relation.journalSensorsen_US
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2021-06-24T14:10:33Z
dspace.date.submission2021-06-24T14:10:33Z
mit.journal.volume21en_US
mit.licensePUBLISHER_CC
mit.metadata.statusPublication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version