Show simple item record

dc.contributor.authorAnschuetz, Eric R.
dc.date.accessioned2021-12-10T17:10:26Z
dc.date.available2021-10-28T12:30:40Z
dc.date.available2021-12-10T17:10:26Z
dc.date.issued2021-07-15
dc.identifier.issn2079-9292
dc.identifier.urihttps://hdl.handle.net/1721.1/136679.2
dc.description.abstractMany quantum algorithms for machine learning require access to classical data in superposition. However, for many natural data sets and algorithms, the overhead required to load the data set in superposition can erase any potential quantum speedup over classical algorithms. Recent work by Harrow introduces a new paradigm in hybrid quantum-classical computing to address this issue, relying on coresets to minimize the data loading overhead of quantum algorithms. We investigated using this paradigm to perform <i>k</i>-means clustering on near-term quantum computers, by casting it as a QAOA optimization instance over a small coreset. We used numerical simulations to compare the performance of this approach to classical <i>k</i>-means clustering. We were able to find data sets with which coresets work well relative to random sampling and where QAOA could potentially outperform standard <i>k</i>-means on a coreset. However, finding data sets where both coresets and QAOA work well—which is necessary for a quantum advantage over <i>k</i>-means on the entire data set—appears to be challenging.en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Expedition in Computing (Grants CCF-1730082/1730449)en_US
dc.description.sponsorshipUnited States. Department of Energy (Grants DE- SC0020289 and DE-SC0020331)en_US
dc.description.sponsorshipNational Science Foundation (U.S.). (Grants OMA-2016136 and the Q-NEXT DOE NQI Center)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grants Phy-1818914, 2110860)en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Graduate Research Fellowship Program (Grant number 4000063445)en_US
dc.description.sponsorshipLester Wolfe Fellowshipen_US
dc.description.sponsorshipHenry W. Kendall Fellowship Funden_US
dc.publisherMultidisciplinary Digital Publishing Instituteen_US
dc.relation.isversionofhttp://dx.doi.org/10.3390/electronics10141690en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceMultidisciplinary Digital Publishing Instituteen_US
dc.titleCoreset Clustering on Small Quantum Computersen_US
dc.typeArticleen_US
dc.identifier.citationElectronics 10 (14): 1690 (2021)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Center for Theoretical Physicsen_US
dc.relation.journalElectronicsen_US
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2021-07-23T13:27:33Z
dspace.date.submission2021-07-23T13:27:33Z
mit.journal.volume10en_US
mit.licensePUBLISHER_CC
mit.metadata.statusPublication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version