Show simple item record

dc.contributor.authorMallamace, Francesco
dc.contributor.authorChen, Sow-Hsin
dc.date.accessioned2021-12-08T17:43:14Z
dc.date.available2021-10-28T13:34:01Z
dc.date.available2021-12-08T17:43:14Z
dc.date.issued2021-08-25
dc.identifier.issn2673-7167
dc.identifier.urihttps://hdl.handle.net/1721.1/136692.2
dc.description.abstractNMR spectroscopic literature data are used, in a wide temperature-pressure range (180–350 K and 0.1–400 MPa), to study the water polymorphism and the validity of the liquid–liquid transition (LLT) hypothesis. We have considered the self-diffusion coefficient <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>D</mi><mi>S</mi></msub></semantics></math></inline-formula> and the reorientational correlation time <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>τ</mi><mi>θ</mi></msub></semantics></math></inline-formula> (obtained from spin-lattice <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mn>1</mn></msub></semantics></math></inline-formula> relaxation times), measured, respectively, in bulk and emulsion liquid water from the stable to well inside the metastable supercooled region. As an effect of the hydrogen bond (HB) networking, the isobars of both these transport functions evolve with <i>T</i> by changing by several orders of magnitude, whereas their pressure dependence become more and more pronounced at lower temperatures. Both these transport functions were then studied according to the Adam–Gibbs model, typical of glass forming liquids, obtaining the water configurational entropy and the corresponding specific heat contribution. The comparison of the evaluated <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>C</mi><mrow><mi>P</mi><mo>,</mo><mi>c</mi><mi>o</mi><mi>n</mi><mi>f</mi></mrow></msub></semantics></math></inline-formula> isobars with the experimentally measured water specific heat reveals the full consistency of this analysis. In particular, the observed <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>C</mi><mrow><mi>P</mi><mo>,</mo><mi>c</mi><mi>o</mi><mi>n</mi><mi>f</mi></mrow></msub></semantics></math></inline-formula> maxima and its diverging behaviors clearly reveals the presence of the LLT and with a reasonable approximation the liquid–liquid critical point (LLCP) locus in the phase diagram.en_US
dc.publisherMultidisciplinary Digital Publishing Instituteen_US
dc.relation.isversionofhttp://dx.doi.org/10.3390/physchem1020014en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceMultidisciplinary Digital Publishing Instituteen_US
dc.titleThe Water Polymorphism and the Liquid–Liquid Transition from Transport Dataen_US
dc.typeArticleen_US
dc.identifier.citationPhyschem 1 (2): 202-214 (2021)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Nuclear Science and Engineering
dc.relation.journalPhyschemen_US
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2021-08-26T13:29:16Z
dspace.date.submission2021-08-26T13:29:16Z
mit.journal.volume1en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version