Show simple item record

dc.contributor.authorFourie, Dehann
dc.contributor.authorTeixeira, Pedro Vaz
dc.contributor.authorLeonard, John J
dc.date.accessioned2021-12-13T16:26:39Z
dc.date.available2021-10-28T15:23:36Z
dc.date.available2021-12-13T16:26:39Z
dc.date.issued2019-11
dc.identifier.urihttps://hdl.handle.net/1721.1/136709.2
dc.description.abstract© 2019 IEEE. We extend the core operation of non-parametric belief propagation (NBP), also known as multi-scale sequential Gibbs sampling, to approximate products of kernel density estimated beliefs that reside on some manifold. The original algorithm, though multidimensional, implicitly assumes the beliefs to reside on the Euclidean mathbb{R}{d} space only. The proposed extension generalizes to any mixture of Riemannian manifolds, provided the primary operations - addition and subtraction - are defined. Our motivation is primarily focused on state-estimation using non-Gaussian factor graphs for multimodal simultaneous localization and mapping in robotics. The paper presents the method as well as simulation and experimental results for validation. Our implementation is publicly available and allows for expansion with user-defined manifold mixtures.en_US
dc.description.sponsorshipOffice of Naval Research (Grants N00014-18-1-2832 and N00014-16- 1-2628)en_US
dc.language.isoen
dc.publisherIEEEen_US
dc.relation.isversionof10.1109/iros40897.2019.8968209en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleNon-parametric Mixed-Manifold Products using Multiscale Kernel Densitiesen_US
dc.typeArticleen_US
dc.identifier.citationFourie, Dehann, Teixeira, Pedro Vaz and Leonard, John. 2019. "Non-parametric Mixed-Manifold Products using Multiscale Kernel Densities." IEEE International Conference on Intelligent Robots and Systems.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.relation.journalIEEE International Conference on Intelligent Robots and Systemsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2020-07-29T17:34:13Z
dspace.date.submission2020-07-29T17:34:15Z
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusPublication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version