Show simple item record

dc.contributor.authorLi, Shuai
dc.contributor.authorBarbastathis, George
dc.contributor.authorGoy, Alexandre Sydney Robert
dc.date.accessioned2021-11-23T17:02:45Z
dc.date.available2021-10-28T17:44:01Z
dc.date.available2021-11-23T17:02:45Z
dc.date.issued2019-03-04
dc.identifier.issn1605-7422
dc.identifier.urihttps://hdl.handle.net/1721.1/136718.2
dc.description.abstract© 2019 SPIE. PhENN is a convolutional deep neural network that reconstructs quantitative phase images from diffracted intensity measurements some distance away from the phase objects. PhENN is trained on known phase-intensity pairs created from a particular database (e.g. ImageNet) but then found to perform well on objects created from other databases (e.g. Faces-LFW, MNIST, etc.). In this paper, we analyze the dependence of quantitative phase measurement quality on PhENN's architecture and the layout of the lensless imaging system, in particular, the number of layers (depth), the size of the innermost layer (waist size), the presence or absence of skip connections, the choice of training loss function and the free space propagation distance.en_US
dc.description.sponsorshipIntelligence Advanced Research Projects Activity (IARPA)en_US
dc.description.sponsorshipSingapore-MIT Alliance (015824)en_US
dc.language.isoen
dc.publisherSPIEen_US
dc.relation.isversionof10.1117/12.2513310en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSPIEen_US
dc.titleAnalysis of Phase-Extraction Neural Network (PhENN) performance for lensless quantitative phase imagingen_US
dc.typeArticleen_US
dc.identifier.citationLi, Shuai, Barbastathis, George and Goy, Alexandre. 2019. "Analysis of Phase-Extraction Neural Network (PhENN) performance for lensless quantitative phase imaging." Progress in Biomedical Optics and Imaging - Proceedings of SPIE, 10887.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.relation.journalProgress in Biomedical Optics and Imaging - Proceedings of SPIEen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2020-06-22T18:46:56Z
dspace.date.submission2020-06-22T18:47:03Z
mit.journal.volume10887en_US
mit.licensePUBLISHER_POLICY
mit.metadata.statusPublication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version