Show simple item record

dc.contributor.authorCollins, Tristan C
dc.contributor.authorYau, Shing-Tung
dc.date.accessioned2021-10-29T13:51:00Z
dc.date.available2021-10-29T13:51:00Z
dc.date.issued2021-04-08
dc.identifier.urihttps://hdl.handle.net/1721.1/136733
dc.description.abstractAbstract In this paper, the first in a series, we study the deformed Hermitian–Yang–Mills (dHYM) equation from the variational point of view as an infinite dimensional GIT problem. The dHYM equation is mirror to the special Lagrangian equation, and our infinite dimensional GIT problem is mirror to Thomas’ GIT picture for special Lagrangians. This gives rise to infinite dimensional manifold $${\mathcal {H}}$$ H closely related to Solomon’s space of positive Lagrangians. In the hypercritical phase case we prove the existence of smooth approximate geodesics, and weak geodesics with $$C^{1,\alpha }$$ C 1 , α regularity. This is accomplished by proving sharp with respect to scale estimates for the Lagrangian phase operator on collapsing manifolds with boundary. As an application of our techniques we give a simplified proof of Chen’s theorem on the existence of $$C^{1,\alpha }$$ C 1 , α geodesics in the space of Kähler metrics. In two follow up papers, these results will be used to examine algebraic obstructions to the existence of solutions to dHYM [26] and special Lagrangians in Landau–Ginzburg models [27].en_US
dc.publisherSpringer International Publishingen_US
dc.relation.isversionofhttps://doi.org/10.1007/s40818-021-00100-7en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer International Publishingen_US
dc.titleMoment Maps, Nonlinear PDE and Stability in Mirror Symmetry, I: Geodesicsen_US
dc.typeArticleen_US
dc.identifier.citationAnnals of PDE. 2021 Apr 08;7(1):11en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2021-04-09T03:19:45Z
dc.language.rfc3066en
dc.rights.holderThe Author(s), under exclusive licence to Springer Nature Switzerland AG
dspace.embargo.termsY
dspace.date.submission2021-04-09T03:19:45Z
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record