MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Entropy in a Closed Manifold and Partial Regularity of Mean Curvature Flow Limit of Surfaces

Author(s)
Sun, Ao
Thumbnail
Download12220_2020_494_ReferencePDF.pdf (329.4Kb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Abstract Inspired by the idea of Colding and Minicozzi (Ann Math 182:755–833, 2015), we define (mean curvature flow) entropy for submanifolds in a general ambient Riemannian manifold. In particular, this entropy is equivalent to area growth of a closed submanifold in a closed ambient manifold with non-negative Ricci curvature. Moreover, this entropy is monotone along the mean curvature flow in a closed Riemannian manifold with non-negative sectional curvatures and parallel Ricci curvature. As an application, we show the partial regularity of the limit of mean curvature flow of surfaces in a three dimensional Riemannian manifold with non-negative sectional curvatures and parallel Ricci curvature.
Date issued
2020-08-11
URI
https://hdl.handle.net/1721.1/136747
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Springer US
Citation
Sun, Ao. 2020. "Entropy in a Closed Manifold and Partial Regularity of Mean Curvature Flow Limit of Surfaces."
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.