Show simple item record

dc.contributor.authorLu, Haihao
dc.contributor.authorFreund, Robert M
dc.date.accessioned2021-11-01T14:33:17Z
dc.date.available2021-11-01T14:33:17Z
dc.date.issued2020-03-04
dc.identifier.urihttps://hdl.handle.net/1721.1/136776
dc.description.abstractAbstract The stochastic Frank–Wolfe method has recently attracted much general interest in the context of optimization for statistical and machine learning due to its ability to work with a more general feasible region. However, there has been a complexity gap in the dependence on the optimality tolerance $$\varepsilon $$ ε in the guaranteed convergence rate for stochastic Frank–Wolfe compared to its deterministic counterpart. In this work, we present a new generalized stochastic Frank–Wolfe method which closes this gap for the class of structured optimization problems encountered in statistical and machine learning characterized by empirical loss minimization with a certain type of “linear prediction” property (formally defined in the paper), which is typically present in loss minimization problems in practice. Our method also introduces the notion of a “substitute gradient” that is a not-necessarily-unbiased estimate of the gradient. We show that our new method is equivalent to a particular randomized coordinate mirror descent algorithm applied to the dual problem, which in turn provides a new interpretation of randomized dual coordinate descent in the primal space. Also, in the special case of a strongly convex regularizer our generalized stochastic Frank–Wolfe method (as well as the randomized dual coordinate descent method) exhibits linear convergence. Furthermore, we present computational experiments that indicate that our method outperforms other stochastic Frank–Wolfe methods for a sufficiently small optimality tolerance, consistent with the theory developed herein.en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttps://doi.org/10.1007/s10107-020-01480-7en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleGeneralized stochastic Frank–Wolfe algorithm with stochastic “substitute” gradient for structured convex optimizationen_US
dc.typeArticleen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.contributor.departmentSloan School of Management
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2021-04-21T03:31:56Z
dc.language.rfc3066en
dc.rights.holderSpringer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society
dspace.embargo.termsY
dspace.date.submission2021-04-21T03:31:55Z
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record