Show simple item record

dc.contributor.authorNiell, A. E.
dc.contributor.authorBarrett, J. P.
dc.contributor.authorCappallo, R. J.
dc.contributor.authorCorey, B. E.
dc.contributor.authorElosegui, P.
dc.contributor.authorMondal, D.
dc.contributor.authorRajagopalan, G.
dc.contributor.authorRuszczyk, C. A.
dc.contributor.authorTitus, M. A.
dc.date.accessioned2022-03-21T13:47:23Z
dc.date.available2021-11-01T14:33:30Z
dc.date.available2022-03-21T13:47:23Z
dc.date.issued2021-05
dc.date.submitted2020-08
dc.identifier.issn1432-1394
dc.identifier.issn0949-7714
dc.identifier.urihttps://hdl.handle.net/1721.1/136807.2
dc.description.abstractAbstract We measured the components of the 31-m-long vector between the two very-long-baseline interferometry (VLBI) antennas at the Kokee Park Geophysical Observatory (KPGO), Hawaii, with approximately 1 mm precision using phase delay observables from dedicated VLBI observations in 2016 and 2018. The two KPGO antennas are the 20 m legacy VLBI antenna and the 12 m VLBI Global Observing System (VGOS) antenna. Independent estimates of the vector between the two antennas were obtained by the National Geodetic Survey (NGS) using standard optical surveys in 2015 and 2018. The uncertainties of the latter survey were 0.3 and 0.7 mm in the horizontal and vertical components of the baseline, respectively. We applied corrections to the measured positions for the varying thermal deformation of the antennas on the different days of the VLBI and survey measurements, which can amount to 1 mm, bringing all results to a common reference temperature. The difference between the VLBI and survey results are 0.2 ± 0.4 mm, −1.3 ± 0.4 mm, and 0.8 ± 0.8 mm in the East, North, and Up topocentric components, respectively. We also estimate that the Up component of the baseline may suffer from systematic errors due to gravitational deformation and uncalibrated instrumental delay variations at the 20 m antenna that may reach ± 10 and −2 mm, respectively, resulting in an accuracy uncertainty on the order of 10 mm for the relative heights of the antennas. Furthermore, possible tilting of the 12 m antenna increases the uncertainties in the differences in the horizontal components to 1.0 mm. These results bring into focus the importance of (1) correcting to a common reference temperature the measurements of the reference points of all geodetic instruments within a site, (2) obtaining measurements of the gravitational deformation of all antennas, and (3) monitoring local motions of the geodetic instruments. These results have significant implications for the accuracy of global reference frames that require accurate local ties between geodetic instruments, such as the International Terrestrial Reference Frame (ITRF).en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttps://doi.org/10.1007/s00190-021-01505-9en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleVLBI measurement of the vector baseline between geodetic antennas at Kokee Park Geophysical Observatory, Hawaiien_US
dc.typeArticleen_US
dc.identifier.citationJournal of Geodesy. 2021 May 27;95(6):65en_US
dc.contributor.departmentHaystack Observatory
dc.relation.journalJournal of Geodesyen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2021-05-30T03:19:06Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.embargo.termsN
dspace.date.submission2021-05-30T03:19:06Z
mit.journal.volume95en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version