MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

How Connected is Too Connected? Impact of Network Topology on Systemic Risk and Collapse of Complex Economic Systems

Author(s)
Vié, Aymeric; Morales, Alfredo J.
Thumbnail
Download10614_2020_10021_ReferencePDF.pdf (6.615Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Abstract Economic interdependencies have become increasingly present in globalized production, financial and trade systems. While establishing interdependencies among economic agents is crucial for the production of complex products, they may also increase systemic risk due to failure propagation. It is crucial to identify how network connectivity impacts both the emergent production and risk of collapse of economic systems. In this paper we propose a model to study the effects of network structure on the behavior of economic systems by varying the density and centralization of connections among agents. The complexity of production increases with connectivity given the combinatorial explosion of parts and products. Emergent systemic risks arise when interconnections increase vulnerabilities. Our results suggest a universal description of economic collapse given in the emergence of tipping points and phase transitions in the relationship between network structure and risk of individual failure. This relationship seems to follow a sigmoidal form in the case of increasingly denser or centralized networks. The model sheds new light on the relevance of policies for the growth of economic complexity, and highlights the trade-off between increasing the potential production of the system and its robustness to collapse. We discuss the policy implications of intervening in the organization of interconnections and system features, and stress how different network structures and node characteristics suggest different directions in order to promote complex and robust economic systems.
Date issued
2020-07-24
URI
https://hdl.handle.net/1721.1/136825
Department
Massachusetts Institute of Technology. Media Laboratory
Publisher
Springer US

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.