MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Personalized prescription of ACEI/ARBs for hypertensive COVID-19 patients

Author(s)
Bertsimas, Dimitris; Borenstein, Alison; Mingardi, Luca; Nohadani, Omid; Orfanoudaki, Agni; Stellato, Bartolomeo; Wiberg, Holly; Sarin, Pankaj; Varelmann, Dirk J.; Estrada, Vicente; Macaya, Carlos; Gil, Iván J. N.; ... Show more Show less
Thumbnail
Download10729_2021_9545_ReferencePDF.pdf (638.0Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Abstract The COVID-19 pandemic has prompted an international effort to develop and repurpose medications and procedures to effectively combat the disease. Several groups have focused on the potential treatment utility of angiotensin-converting–enzyme inhibitors (ACEIs) and angiotensin-receptor blockers (ARBs) for hypertensive COVID-19 patients, with inconclusive evidence thus far. We couple electronic medical record (EMR) and registry data of 3,643 patients from Spain, Italy, Germany, Ecuador, and the US with a machine learning framework to personalize the prescription of ACEIs and ARBs to hypertensive COVID-19 patients. Our approach leverages clinical and demographic information to identify hospitalized individuals whose probability of mortality or morbidity can decrease by prescribing this class of drugs. In particular, the algorithm proposes increasing ACEI/ARBs prescriptions for patients with cardiovascular disease and decreasing prescriptions for those with low oxygen saturation at admission. We show that personalized recommendations can improve patient outcomes by 1.0% compared to the standard of care when applied to external populations. We develop an interactive interface for our algorithm, providing physicians with an actionable tool to easily assess treatment alternatives and inform clinical decisions. This work offers the first personalized recommendation system to accurately evaluate the efficacy and risks of prescribing ACEIs and ARBs to hypertensive COVID-19 patients.
Date issued
2021-03-15
URI
https://hdl.handle.net/1721.1/136841
Department
Sloan School of Management
Publisher
Springer US

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.