MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The Energy-Energy Correlation in the back-to-back limit at N3LO and N3LL′

Author(s)
Ebert, Markus A.; Mistlberger, Bernhard; Vita, Gherardo
Thumbnail
Download13130_2021_Article_16432.pdf (1.272Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Abstract We present the analytic formula for the Energy-Energy Correlation (EEC) in electron-positron annihilation computed in perturbative QCD to next-to-next-to-next-to-leading order (N3LO) in the back-to-back limit. In particular, we consider the EEC arising from the annihilation of an electron-positron pair into a virtual photon as well as a Higgs boson and their subsequent inclusive decay into hadrons. Our computation is based on a factorization theorem of the EEC formulated within Soft-Collinear Effective Theory (SCET) for the back-to-back limit. We obtain the last missing ingredient for our computation — the jet function — from a recent calculation of the transverse-momentum dependent fragmentation function (TMDFF) at N3LO. We combine the newly obtained N3LO jet function with the well known hard and soft function to predict the EEC in the back-to-back limit. The leading transcendental contribution of our analytic formula agrees with previously obtained results in N $$ \mathcal{N} $$ = 4 supersymmetric Yang-Mills theory. We obtain the N = 2 Mellin moment of the bulk region of the EEC using momentum sum rules. Finally, we obtain the first resummation of the EEC in the back-to-back limit at N3LL′ accuracy, resulting in a factor of ∼ 4 reduction of uncertainties in the peak region compared to N3LL predictions.
Date issued
2021-08-04
URI
https://hdl.handle.net/1721.1/136866
Department
Massachusetts Institute of Technology. Center for Theoretical Physics
Publisher
Springer Berlin Heidelberg
Citation
Journal of High Energy Physics. 2021 Aug 04;2021(8):22
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.