MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Reverberation in Tidal Disruption Events: Dust Echoes, Coronal Emission Lines, Multi-wavelength Cross-correlations, and QPOs

Author(s)
van Velzen, Sjoert; Pasham, Dheeraj R.; Komossa, Stefanie; Yan, Lin; Kara, Erin A.
Thumbnail
Download11214_2021_Article_835.pdf (2.405Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Abstract Stellar tidal disruption events (TDEs) are typically discovered by transient emission due to accretion or shocks of the stellar debris. Yet this luminous flare can be reprocessed by gas or dust that inhabits a galactic nucleus, resulting in multiple reverberation signals. Nuclear dust heated by the TDE will lead to an echo at infrared wavelengths (1-10 μm) and transient coronal lines in optical spectra of TDEs trace reverberation by gas that orbits the black hole. Both of these signal have been detected, here we review this rapidly developing field. We also review the results that have been extracted from TDEs with high-quality X-ray light curves: quasi periodic oscillations (QPOs), reverberation lags of fluorescence lines, and cross-correlations with emission at other wavelengths. The observational techniques that are covered in this review probe the emission from TDEs over a wide range of scales: from ∼ 1 $\sim 1$  light year to the innermost parts of the newly formed accretion disk. They provide insights into important properties of TDEs such as their bolometric output and the geometry of the accretion flow. While reverberation signals are not detected for every TDE, we anticipate they will become more commonplace when the next generation of X-ray and infrared instruments become operational.
Date issued
2021-07-01
URI
https://hdl.handle.net/1721.1/136898
Department
MIT Kavli Institute for Astrophysics and Space Research
Publisher
Springer Netherlands
Citation
Space Science Reviews. 2021 Jul 01;217(5):63
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.