MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On properness of K-moduli spaces and optimal degenerations of Fano varieties

Author(s)
Blum, Harold; Halpern-Leistner, Daniel; Liu, Yuchen; Xu, Chenyang
Thumbnail
Download29_2021_694_ReferencePDF.pdf (486.3Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Abstract We establish an algebraic approach to prove the properness of moduli spaces of K-polystable Fano varieties and reduce the problem to a conjecture on destabilizations of K-unstable Fano varieties. Specifically, we prove that if the stability threshold of every K-unstable Fano variety is computed by a divisorial valuation, then such K-moduli spaces are proper. The argument relies on studying certain optimal destabilizing test configurations and constructing a $$\Theta $$ Θ -stratification on the moduli stack of Fano varieties.
Date issued
2021-07-28
URI
https://hdl.handle.net/1721.1/136911
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Springer International Publishing
Citation
Selecta Mathematica. 2021 Jul 28;27(4):73
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.