MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On properness of K-moduli spaces and optimal degenerations of Fano varieties

Author(s)
Blum, Harold; Halpern-Leistner, Daniel; Liu, Yuchen; Xu, Chenyang
Thumbnail
Download29_2021_694_ReferencePDF.pdf (Embargoed until: 2022-07-29, 486.3Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Abstract We establish an algebraic approach to prove the properness of moduli spaces of K-polystable Fano varieties and reduce the problem to a conjecture on destabilizations of K-unstable Fano varieties. Specifically, we prove that if the stability threshold of every K-unstable Fano variety is computed by a divisorial valuation, then such K-moduli spaces are proper. The argument relies on studying certain optimal destabilizing test configurations and constructing a $$\Theta $$ Θ -stratification on the moduli stack of Fano varieties.
Date issued
2021-07-28
URI
https://hdl.handle.net/1721.1/136911
Publisher
Springer International Publishing
Citation
Selecta Mathematica. 2021 Jul 28;27(4):73
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.