MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Testing linear-invariant properties

Author(s)
Tidor, J; Zhao, Y
Thumbnail
DownloadSubmitted version (500.5Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© 2020 IEEE. Fix a prime p and a positive integer R. We study the property testing of functions mathbb{F} {p}{n} rightarrow[R]. We say that a property is testable if there exists an oblivious tester for this property with one-sided error and constant query complexity. Furthermore, a property is proximity oblivious-testable (PO-testable) if the test is also independent of the proximity parameter epsilon. It is known that a number of natural properties such as linearity and being a low degree polynomial are PO-testable. These properties are examples of linear-invariant properties, meaning that they are preserved under linear automorphisms of the domain. Following work of Kaufman and Sudan, the study of linear-invariant properties has been an important problem in arithmetic property testing. A central conjecture in this field, proposed by Bhattacharyya, Grigorescu, and Shapira, is that a linear-invariant property is testable if and only if it is semi subspace-hereditary. We prove two results, the first resolves this conjecture and the second classifies PO-testable properties. 1)A linear-invariant property is testable if and only if it is semi subspace-hereditary. 2)A linear-invariant property is PO-testable if and only if it is locally characterized. Our innovations are two-fold. We give a more powerful version of the compactness argument first introduced by Alon and Shapira. This relies on a new strong arithmetic regularity lemma in which one mixes different levels of Gowers uniformity. This allows us to extend the work of Bhattacharyya, Fischer, Hatami, Hatami, and Lovett by removing the bounded complexity restriction in their work. Our second innovation is a novel recoloring technique called patching. This Ramsey-theoretic technique is critical for working in the linear-invariant setting and allows us to remove the translation-invariant restriction present in previous work.
Date issued
2021-01-19
URI
https://hdl.handle.net/1721.1/136969
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Proceedings - Annual IEEE Symposium on Foundations of Computer Science, FOCS
Publisher
IEEE
Citation
Tidor, J and Zhao, Y. 2021. "Testing linear-invariant properties." Proceedings - Annual IEEE Symposium on Foundations of Computer Science, FOCS, 2020-November.
Version: Original manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.