MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep neural networks to improve the dynamic range of Zernike phase-contrast wavefront sensing in high-contrast imaging systems

Author(s)
Allan, Gregory; Kang, Iksung; Douglas, Ewan S.; N'Diaye, Mamadou; Barbastathis, George; Cahoy, Kerri; ... Show more Show less
Thumbnail
DownloadPublished version (5.967Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
In high-contrast imaging applications, such as the direct imaging of exoplanets, a coronagraph is used to suppress the light from an on-axis star so that a dimmer, off-axis object can be imaged. To maintain a high-contrast dark region in the image, optical aberrations in the instrument must be minimized. The use of phase-contrast-based Zernike Wavefront Sensors (ZWFS) to measure and correct for aberrations has been studied for large segmented aperture telescopes and ZWFS are planned for the coronagraph instrument on the Roman Space Telescope (RST). ZWFS enable subnanometer wavefront sensing precision, but their response is nonlinear. Lyot-based Low-OrderWavefront Sensors (LLOWFS) are an alternative technique, where light rejected from a coronagraph's Lyot stop is used for linear measurement of small wavefront displacements. Recently, the use of Deep Neural Networks (DNNs) to enable phase retrieval from intensity measurements has been demonstrated in several optical configurations. In a LLOWFS system, the use of DNNs rather than linear regression has been shown to greatly extend the sensor's usable dynamic range. In this work, we investigate the use of two different types of machine learning algorithms to extend the dynamic range of the ZWFS. We present static and dynamic deep learning architectures for single- and multi-wavelength measurements, respectively. Using simulated ZWFS intensity measurements, we validate the network training technique and present phase reconstruction results. We show an increase in the capture range of the ZWFS sensor by a factor of 3.4 with a single wavelength and 4.5 with four wavelengths.
Date issued
2020-12-13
URI
https://hdl.handle.net/1721.1/136980
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics; Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Proceedings of SPIE - The International Society for Optical Engineering
Publisher
SPIE
Citation
Allan, Gregory, Kang, Iksung, Douglas, Ewan S., N'Diaye, Mamadou, Barbastathis, George et al. 2020. "Deep neural networks to improve the dynamic range of Zernike phase-contrast wavefront sensing in high-contrast imaging systems." Proceedings of SPIE - The International Society for Optical Engineering, 11443.
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.