Show simple item record

dc.contributor.authorMansinghka, Vikash K.
dc.contributor.authorSchaechtle, Ulrich
dc.contributor.authorHanda, Shivam
dc.contributor.authorRadul, Alexey
dc.contributor.authorChen, Yutian
dc.contributor.authorRinard, Martin
dc.date.accessioned2021-11-01T16:59:51Z
dc.date.available2021-11-01T16:59:51Z
dc.date.issued2018-06-11
dc.identifier.urihttps://hdl.handle.net/1721.1/136984
dc.description.abstract© 2018 Copyright held by the owner/author(s). We introduce inference metaprogramming for probabilistic programming languages, including new language constructs, a formalism, and the first demonstration of effectiveness in practice. Instead of relying on rigid black-box inference algorithms hard-coded into the language implementation as in previous probabilistic programming languages, inference metaprogramming enables developers to 1) dynamically decompose inference problems into subproblems, 2) apply inference tactics to subproblems, 3) alternate between incorporating new data and performing inference over existing data, and 4) explore multiple execution traces of the probabilistic program at once. Implemented tactics include gradient-based optimization, Markov chain Monte Carlo, variational inference, and sequental Monte Carlo techniques. Inference metaprogramming enables the concise expression of probabilistic models and inference algorithms across diverse fields, such as computer vision, data science, and robotics, within a single probabilistic programming language.en_US
dc.language.isoen
dc.publisherACMen_US
dc.relation.isversionof10.1145/3192366.3192409en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceOther repositoryen_US
dc.titleProbabilistic programming with programmable inferenceen_US
dc.typeArticleen_US
dc.identifier.citationMansinghka, Vikash K., Schaechtle, Ulrich, Handa, Shivam, Radul, Alexey, Chen, Yutian et al. 2018. "Probabilistic programming with programmable inference."
dc.contributor.departmentMIT-IBM Watson AI Lab
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciences
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2019-07-02T16:39:26Z
dspace.date.submission2019-07-02T16:39:26Z
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record