Show simple item record

dc.contributor.authorWong, Jay M.
dc.contributor.authorKee, Vincent
dc.contributor.authorLe, Tiffany
dc.contributor.authorWagner, Syler
dc.contributor.authorMariottini, Gian-Luca
dc.contributor.authorSchneider, Abraham
dc.contributor.authorHamilton, Lei
dc.contributor.authorChipalkatty, Rahul
dc.contributor.authorHebert, Mitchell
dc.contributor.authorJohnson, David M.S.
dc.contributor.authorWu, Jimmy
dc.contributor.authorZhou, Bolei
dc.contributor.authorTorralba, Antonio
dc.date.accessioned2021-11-01T17:02:52Z
dc.date.available2021-11-01T17:02:52Z
dc.date.issued2017-09
dc.identifier.urihttps://hdl.handle.net/1721.1/136986
dc.description.abstract© 2017 IEEE. Recent robotic manipulation competitions have highlighted that sophisticated robots still struggle to achieve fast and reliable perception of task-relevant objects in complex, realistic scenarios. To improve these systems' perceptive speed and robustness, we present SegICP, a novel integrated solution to object recognition and pose estimation. SegICP couples convolutional neural networks and multi-hypothesis point cloud registration to achieve both robust pixel-wise semantic segmentation as well as accurate and real-time 6-DOF pose estimation for relevant objects. Our architecture achieves 1 cm position error and < 5° angle error in real time without an initial seed. We evaluate and benchmark SegICP against an annotated dataset generated by motion capture.en_US
dc.language.isoen
dc.publisherIEEEen_US
dc.relation.isversionof10.1109/iros.2017.8206470en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleSegICP: Integrated deep semantic segmentation and pose estimationen_US
dc.typeArticleen_US
dc.identifier.citationWong, Jay M., Kee, Vincent, Le, Tiffany, Wagner, Syler, Mariottini, Gian-Luca et al. 2017. "SegICP: Integrated deep semantic segmentation and pose estimation."
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Information and Decision Systems
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2019-07-11T16:50:36Z
dspace.date.submission2019-07-11T16:50:37Z
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record