Show simple item record

dc.contributor.authorKellnhofer, Petr
dc.contributor.authorRecasens, Adria
dc.contributor.authorStent, Simon
dc.contributor.authorMatusik, Wojciech
dc.contributor.authorTorralba, Antonio
dc.date.accessioned2021-11-01T18:34:46Z
dc.date.available2021-11-01T18:34:46Z
dc.date.issued2019
dc.identifier.urihttps://hdl.handle.net/1721.1/137035
dc.description.abstract© 2019 IEEE. Understanding where people are looking is an informative social cue. In this work, we present Gaze360, a large-scale remote gaze-tracking dataset and method for robust 3D gaze estimation in unconstrained images. Our dataset consists of 238 subjects in indoor and outdoor environments with labelled 3D gaze across a wide range of head poses and distances. It is the largest publicly available dataset of its kind by both subject and variety, made possible by a simple and efficient collection method. Our proposed 3D gaze model extends existing models to include temporal information and to directly output an estimate of gaze uncertainty. We demonstrate the benefits of our model via an ablation study, and show its generalization performance via a cross-dataset evaluation against other recent gaze benchmark datasets. We furthermore propose a simple self-supervised approach to improve cross-dataset domain adaptation. Finally, we demonstrate an application of our model for estimating customer attention in a supermarket setting. Our dataset and models will be made available at http://gaze360.csail.mit.edu.en_US
dc.language.isoen
dc.publisherIEEEen_US
dc.relation.isversionof10.1109/ICCV.2019.00701en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleGaze360: Physically Unconstrained Gaze Estimation in the Wilden_US
dc.typeArticleen_US
dc.identifier.citationKellnhofer, Petr, Recasens, Adria, Stent, Simon, Matusik, Wojciech and Torralba, Antonio. 2019. "Gaze360: Physically Unconstrained Gaze Estimation in the Wild." Proceedings of the IEEE International Conference on Computer Vision, 2019-October.
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
dc.relation.journalProceedings of the IEEE International Conference on Computer Visionen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2021-02-05T18:34:41Z
dspace.orderedauthorsKellnhofer, P; Recasens, A; Stent, S; Matusik, W; Torralba, Aen_US
dspace.date.submission2021-02-05T18:34:46Z
mit.journal.volume2019-Octoberen_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record