MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

KPart: A Hybrid Cache Partitioning-Sharing Technique for Commodity Multicores

Author(s)
El-Sayed, Nosayba; Mukkara, Anurag; Tsai, Po-An; Kasture, Harshad; Ma, Xiaosong; Sanchez, Daniel; ... Show more Show less
Thumbnail
DownloadAccepted version (742.8Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© 2018 IEEE. Cache partitioning is now available in commercial hardware. In theory, software can leverage cache partitioning to use the last-level cache better and improve performance. In practice, however, current systems implement way-partitioning, which offers a limited number of partitions and often hurts performance. These limitations squander the performance potential of smart cache management. We present KPart, a hybrid cache partitioning-sharing technique that sidesteps the limitations of way-partitioning and unlocks significant performance on current systems. KPart first groups applications into clusters, then partitions the cache among these clusters. To build clusters, KPart relies on a novel technique to estimate the performance loss an application suffers when sharing a partition. KPart automatically chooses the number of clusters, balancing the isolation benefits of way-partitioning with its potential performance impact. KPart uses detailed profiling information to make these decisions. This information can be gathered either offline, or online at low overhead using a novel profiling mechanism. We evaluate KPart in a real system and in simulation. KPart improves throughput by 24% on average (up to 79%) on an Intel Broadwell-D system, whereas prior per-application partitioning policies improve throughput by just 1.7% on average and hurt 30% of workloads. Simulation results show that KPart achieves most of the performance of more advanced partitioning techniques that are not yet available in hardware.
Date issued
2018-02
URI
https://hdl.handle.net/1721.1/137048
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Publisher
IEEE
Citation
El-Sayed, Nosayba, Mukkara, Anurag, Tsai, Po-An, Kasture, Harshad, Ma, Xiaosong et al. 2018. "KPart: A Hybrid Cache Partitioning-Sharing Technique for Commodity Multicores."
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.