MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bioelectrochemical platforms to study and detect emerging pathogens

Author(s)
Machado, Mary C.; Zamani, Marjon; Daniel, Susan; Furst, Ariel L.
Thumbnail
Download43577_2021_172_ReferencePDF.pdf (1.185Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Abstract The ongoing SARS-CoV-2 pandemic has emphasized the importance of technologies to rapidly detect emerging pathogens and understand their interactions with hosts. Platforms based on the combination of biological recognition and electrochemical signal transduction, generally termed bioelectrochemical platforms, offer unique opportunities to both sense and study pathogens. Improved bio-based materials have enabled enhanced control over the biotic–abiotic interface in these systems. These improvements have generated platforms with the capability to elucidate biological function rather than simply detect targets. This advantage is a key feature of recent bioelectrochemical platforms applied to infectious disease. Here, we describe developments in materials for bioelectrochemical platforms to study and detect emerging pathogens. The incorporation of host membrane material into electrochemical devices has provided unparalleled insights into the interaction between viruses and host cells, and new capture methods have enabled the specific detection of bacterial pathogens, such as those that cause secondary infections with SARS-CoV-2. As these devices continue to improve through the merging of hi-tech materials and biomaterials, the scalability and commercial viability of these devices will similarly improve. Graphic Abstract
Date issued
2021-08-31
URI
https://hdl.handle.net/1721.1/137054
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Publisher
Springer International Publishing
Citation
Machado, Mary C., Zamani, Marjon, Daniel, Susan and Furst, Ariel L. 2021. "Bioelectrochemical platforms to study and detect emerging pathogens."
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.