Show simple item record

dc.contributor.authorCheung, Wang Chi
dc.contributor.authorSimchi-Levi, David
dc.contributor.authorZhu, Ruihao
dc.date.accessioned2021-11-02T12:19:41Z
dc.date.available2021-11-02T12:19:41Z
dc.date.issued2018
dc.identifier.issn1556-5068
dc.identifier.urihttps://hdl.handle.net/1721.1/137064
dc.description.abstract© 2019 by the author(s). We introduce algorithms that achieve state-of-the-art dynamic regret bounds for non-stationary linear stochastic bandit setting. It captures natural applications such as dynamic pricing and ads allocation in a changing environment. We show how the difficulty posed by the non-stationarity can be overcome by a novel marriage between stochastic and adversarial bandits learning algorithms. Defining d, BT, and T as the problem dimension, the variation budget, and the total time horizon, respectively, our main contributions are the tuned Sliding Window UCB (SW-UCB) algorithm with optimal Oe(d2/3(BT + 1)1/3T2/3) dynamic regret, and the tuning free bandit-over-bandit (BOB) framework built on top of the SW-UCB algorithm with best Oe(d2/3(BT + 1)1/4T3/4) dynamic regret.en_US
dc.language.isoen
dc.publisherElsevier BVen_US
dc.relation.isversionof10.2139/ssrn.3261050en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleLearning to Optimize Under Non-Stationarityen_US
dc.typeArticleen_US
dc.identifier.citationCheung, Wang Chi, Simchi-Levi, David and Zhu, Ruihao. 2018. "Learning to Optimize Under Non-Stationarity." AISTATS 2019 - 22nd International Conference on Artificial Intelligence and Statistics, 89.
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Data, Systems, and Society
dc.contributor.departmentStatistics and Data Science Center (Massachusetts Institute of Technology)
dc.relation.journalAISTATS 2019 - 22nd International Conference on Artificial Intelligence and Statisticsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2020-06-02T16:54:50Z
dspace.date.submission2020-06-02T16:54:53Z
mit.journal.volume89en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record