MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Thompson Sampling on Symmetric Alpha-Stable Bandits

Author(s)
Dubey, Abhimanyu; Pentland, Alex Sandy'
Thumbnail
DownloadAccepted version (1.288Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© 2019 International Joint Conferences on Artificial Intelligence. All rights reserved. Thompson Sampling provides an efficient technique to introduce prior knowledge in the multiarmed bandit problem, along with providing remarkable empirical performance. In this paper, we revisit the Thompson Sampling algorithm under rewards drawn from symmetric α-stable distributions, which are a class of heavy-tailed probability distributions utilized in finance and economics, in problems such as modeling stock prices and human behavior. We present an efficient framework for posterior inference, which leads to two algorithms for Thompson Sampling in this setting. We prove finite-time regret bounds for both algorithms, and demonstrate through a series of experiments the stronger performance of Thompson Sampling in this setting. With our results, we provide an exposition of symmetric α-stable distributions in sequential decision-making, and enable sequential Bayesian inference in applications from diverse fields in finance and complex systems that operate on heavy-tailed features.
Date issued
2019
URI
https://hdl.handle.net/1721.1/137085
Department
Massachusetts Institute of Technology. Media Laboratory
Journal
IJCAI International Joint Conference on Artificial Intelligence
Publisher
International Joint Conferences on Artificial Intelligence
Citation
Dubey, Abhimanyu and Pentland, Alex Sandy'. 2019. "Thompson Sampling on Symmetric Alpha-Stable Bandits." IJCAI International Joint Conference on Artificial Intelligence, 2019-August.
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.