MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Using Application-Level Thread Progress Information to Manage Power and Performance

Author(s)
Neuman, Sabrina M; Miller, Jason E; Sanchez, Daniel; Devadas, Srinivas
Thumbnail
DownloadAccepted version (272.1Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© 2017 IEEE. Power and thermal limitations make it impossible to run all cores on a multicore system at their maximum frequency. Therefore, modern systems require careful power management. These systems must manage complex tradeoffs between energy, power, and frequency, choosing which cores to accelerate to achieve good performance while maintaining energy efficiency or operating under a power budget. Navigating these tradeoffs is especially hard with multi-threaded applications, where performance depends on the relative progress of parallel worker threads between synchronization points. Prior work on chip-level power management for multi-threaded applications has largely relied on indirect heuristics and metrics calculated from low-level performance counters to estimate each thread's progress. However, these indirect metrics are often inaccurate. Instead, we propose to gather progress information directly from software itself. We present ThreadBeats, a simple application-level annotation framework that directly and accurately conveys thread progress information to hardware. We design DVFS controllers that exploit ThreadBeats information for two purposes: (i) improving performance by equalizing thread progress and (ii) minimizing runtime under a power budget constraint. These controllers reduce wait time at barriers by 77% on average and improve energy-delay product under a power budget by 23% over prior work.
Date issued
2017
URI
https://hdl.handle.net/1721.1/137122
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Journal
Proceedings - 35th IEEE International Conference on Computer Design, ICCD 2017
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Neuman, Sabrina M, Miller, Jason E, Sanchez, Daniel and Devadas, Srinivas. 2017. "Using Application-Level Thread Progress Information to Manage Power and Performance." Proceedings - 35th IEEE International Conference on Computer Design, ICCD 2017.
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.