Show simple item record

dc.contributor.authorShah, D
dc.contributor.authorSomani, V
dc.contributor.authorXie, Q
dc.contributor.authorXu, Z
dc.date.accessioned2021-11-02T17:41:39Z
dc.date.available2021-11-02T17:41:39Z
dc.date.issued2020
dc.identifier.urihttps://hdl.handle.net/1721.1/137142
dc.description.abstract© 2020 Owner/Author. We consider the problem of finding Nash equilibrium for two-player turn-based zero-sum games. Inspired by the AlphaGo Zero (AGZ) algorithm, we develop a Reinforcement Learning based approach. Specifically, we propose Explore-Improve-Supervise (EIS) method that combines "exploration", "policy improvement"and "supervised learning"to find the value function and policy associated with Nash equilibrium. We identify sufficient conditions for convergence and correctness for such an approach. For a concrete instance of EIS where random policy is used for "exploration", Monte-Carlo Tree Search is used for "policy improvement"and Nearest Neighbors is used for "supervised learning", we establish that this method finds an\varepsilon-approximate value function of Nash equilibrium in\widetildeO(\varepsilon^-(d+4)) steps when the underlying state-space of the game is continuous and d-dimensional. This is nearly optimal as we establish a lower bound of\widetildeØmega (\varepsilon^-(d+2)) for any policy.en_US
dc.language.isoen
dc.publisherACMen_US
dc.relation.isversionof10.1145/3412815.3416888en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceACMen_US
dc.titleOn Reinforcement Learning for Turn-based Zero-sum Markov Gamesen_US
dc.typeArticleen_US
dc.identifier.citationShah, D, Somani, V, Xie, Q and Xu, Z. 2020. "On Reinforcement Learning for Turn-based Zero-sum Markov Games." FODS 2020 - Proceedings of the 2020 ACM-IMS Foundations of Data Science Conference.
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Information and Decision Systems
dc.relation.journalFODS 2020 - Proceedings of the 2020 ACM-IMS Foundations of Data Science Conferenceen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2021-06-25T12:46:49Z
dspace.orderedauthorsShah, D; Somani, V; Xie, Q; Xu, Zen_US
dspace.date.submission2021-06-25T12:46:51Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record