Show simple item record

dc.contributor.authorZhao, Hang
dc.contributor.authorGan, Chuang
dc.contributor.authorMa, Wei-Chiu
dc.contributor.authorTorralba, Antonio
dc.date.accessioned2021-11-02T18:55:26Z
dc.date.available2021-11-02T18:55:26Z
dc.date.issued2019-10
dc.identifier.urihttps://hdl.handle.net/1721.1/137169
dc.description.abstract© 2019 IEEE. Sounds originate from object motions and vibrations of surrounding air. Inspired by the fact that humans is capable of interpreting sound sources from how objects move visually, we propose a novel system that explicitly captures such motion cues for the task of sound localization and separation. Our system is composed of an end-to-end learnable model called Deep Dense Trajectory (DDT), and a curriculum learning scheme. It exploits the inherent coherence of audio-visual signals from a large quantities of unlabeled videos. Quantitative and qualitative evaluations show that comparing to previous models that rely on visual appearance cues, our motion based system improves performance in separating musical instrument sounds. Furthermore, it separates sound components from duets of the same category of instruments, a challenging problem that has not been addressed before.en_US
dc.language.isoen
dc.publisherIEEEen_US
dc.relation.isversionof10.1109/iccv.2019.00182en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleThe Sound of Motionsen_US
dc.typeArticleen_US
dc.identifier.citationZhao, Hang, Gan, Chuang, Ma, Wei-Chiu and Torralba, Antonio. 2019. "The Sound of Motions." Proceedings of the IEEE International Conference on Computer Vision, 2019-October.
dc.contributor.departmentMIT-IBM Watson AI Lab
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.relation.journalProceedings of the IEEE International Conference on Computer Visionen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2021-04-15T17:53:25Z
dspace.orderedauthorsZhao, H; Gan, C; Ma, W-C; Torralba, Aen_US
dspace.date.submission2021-04-15T17:53:27Z
mit.journal.volume2019-Octoberen_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record