MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Efficiently testing local optimality and escaping saddles for RELu networks

Author(s)
Jadbabaie, Ali; Yun, Chulhee; Sra, Suvrit
Thumbnail
DownloadAccepted version (442.5Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© 7th International Conference on Learning Representations, ICLR 2019. All Rights Reserved. We provide a theoretical algorithm for checking local optimality and escaping saddles at nondifferentiable points of empirical risks of two-layer ReLU networks. Our algorithm receives any parameter value and returns: local minimum, second-order stationary point, or a strict descent direction. The presence of M data points on the nondifferentiability of the ReLU divides the parameter space into at most 2M regions, which makes analysis difficult. By exploiting polyhedral geometry, we reduce the total computation down to one convex quadratic program (QP) for each hidden node, O(M) (in)equality tests, and one (or a few) nonconvex QP. For the last QP, we show that our specific problem can be solved efficiently, in spite of nonconvexity. In the benign case, we solve one equality constrained QP, and we prove that projected gradient descent solves it exponentially fast. In the bad case, we have to solve a few more inequality constrained QPs, but we prove that the time complexity is exponential only in the number of inequality constraints. Our experiments show that either benign case or bad case with very few inequality constraints occurs, implying that our algorithm is efficient in most cases.
Date issued
2019
URI
https://hdl.handle.net/1721.1/137171
Department
Massachusetts Institute of Technology. Laboratory for Information and Decision Systems; Massachusetts Institute of Technology. Institute for Data, Systems, and Society
Journal
7th International Conference on Learning Representations, ICLR 2019
Citation
Jadbabaie, Ali, Yun, Chulhee and Sra, Suvrit. 2019. "Efficiently testing local optimality and escaping saddles for RELu networks." 7th International Conference on Learning Representations, ICLR 2019.
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.