Show simple item record

dc.contributor.authorChung, Pil Joong
dc.contributor.authorSingh, Gajendra P.
dc.contributor.authorHuang, Chung-Hao
dc.contributor.authorKoyyappurath, Sayuj
dc.contributor.authorSeo, Jun Sung
dc.contributor.authorMao, Hui-Zhu
dc.contributor.authorDiloknawarit, Piyarut
dc.contributor.authorRam, Rajeev J.
dc.contributor.authorSarojam, Rajani
dc.contributor.authorChua, Nam-Hai
dc.date.accessioned2021-11-03T16:52:25Z
dc.date.available2021-11-03T16:52:25Z
dc.date.issued2021-10-21
dc.identifier.issn1664-462X
dc.identifier.urihttps://hdl.handle.net/1721.1/137239
dc.description.abstract<jats:p>We have developed a rapid Raman spectroscopy-based method for the detection and quantification of early innate immunity responses in Arabidopsis and Choy Sum plants. Arabidopsis plants challenged with flg22 and elf18 elicitors could be differentiated from mock-treated plants by their Raman spectral fingerprints. From the difference Raman spectrum and the value of <jats:italic>p</jats:italic> at each Raman shift, we derived the Elicitor Response Index (ERI) as a quantitative measure of the response whereby a higher ERI value indicates a more significant elicitor-induced immune response. Among various Raman spectral bands contributing toward the ERI value, the most significant changes were observed in those associated with carotenoids and proteins. To validate these results, we investigated several characterized Arabidopsis pattern-triggered immunity (PTI) mutants. Compared to wild type (WT), positive regulatory mutants had ERI values close to zero, whereas negative regulatory mutants at early time points had higher ERI values. Similar to elicitor treatments, we derived an analogous Infection Response Index (IRI) as a quantitative measure to detect the early PTI response in Arabidopsis and Choy Sum plants infected with bacterial pathogens. The Raman spectral bands contributing toward a high IRI value were largely identical to the ERI Raman spectral bands. Raman spectroscopy is a convenient tool for rapid screening for Arabidopsis PTI mutants and may be suitable for the noninvasive and early diagnosis of pathogen-infected crop plants.</jats:p>en_US
dc.publisherFrontiers Media SAen_US
dc.relation.isversionof10.3389/fpls.2021.746586en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceFrontiersen_US
dc.titleRapid Detection and Quantification of Plant Innate Immunity Response Using Raman Spectroscopyen_US
dc.typeArticleen_US
dc.identifier.citationChung, Pil Joong, Singh, Gajendra P., Huang, Chung-Hao, Koyyappurath, Sayuj, Seo, Jun Sung et al. 2021. "Rapid Detection and Quantification of Plant Innate Immunity Response Using Raman Spectroscopy." 12.
dc.contributor.departmentSingapore-MIT Alliance in Research and Technology (SMART)
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronics
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.date.submission2021-11-03T16:43:42Z
mit.journal.volume12en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record