Show simple item record

dc.contributor.authorSchoeller, Felix
dc.contributor.authorMiller, Mark
dc.contributor.authorSalomon, Roy
dc.contributor.authorFriston, Karl J.
dc.date.accessioned2021-11-03T16:57:42Z
dc.date.available2021-11-03T16:57:42Z
dc.date.issued2021-10-13
dc.identifier.issn1662-5137
dc.identifier.urihttps://hdl.handle.net/1721.1/137241
dc.description.abstract<jats:p>In order to interact seamlessly with robots, users must infer the causes of a robot’s behavior–and be confident about that inference (and its predictions). Hence, trust is a necessary condition for human-robot collaboration (HRC). However, and despite its crucial role, it is still largely unknown how trust emerges, develops, and supports human relationship to technological systems. In the following paper we review the literature on trust, human-robot interaction, HRC, and human interaction at large. Early models of trust suggest that it is a trade-off between benevolence and competence; while studies of human to human interaction emphasize the role of shared behavior and mutual knowledge in the gradual building of trust. We go on to introduce a model of trust as an agent’ best explanation for reliable sensory exchange with an extended motor plant or partner. This model is based on the cognitive neuroscience of active inference and suggests that, in the context of HRC, trust can be casted in terms of virtual control over an artificial agent. Interactive feedback is a necessary condition to the extension of the trustor’s perception-action cycle. This model has important implications for understanding human-robot interaction and collaboration–as it allows the traditional determinants of human trust, such as the benevolence and competence attributed to the trustee, to be defined in terms of hierarchical active inference, while vulnerability can be described in terms of information exchange and empowerment. Furthermore, this model emphasizes the role of user feedback during HRC and suggests that boredom and surprise may be used in personalized interactions as markers for under and over-reliance on the system. The description of trust as a sense of virtual control offers a crucial step toward grounding human factors in cognitive neuroscience and improving the design of human-centered technology. Furthermore, we examine the role of shared behavior in the genesis of trust, especially in the context of dyadic collaboration, suggesting important consequences for the acceptability and design of human-robot collaborative systems.</jats:p>en_US
dc.publisherFrontiers Media SAen_US
dc.relation.isversionof10.3389/fnsys.2021.669810en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceFrontiersen_US
dc.titleTrust as Extended Control: Human-Machine Interactions as Active Inferenceen_US
dc.typeArticleen_US
dc.identifier.citationSchoeller, Felix, Miller, Mark, Salomon, Roy and Friston, Karl J. 2021. "Trust as Extended Control: Human-Machine Interactions as Active Inference." 15.
dc.contributor.departmentMassachusetts Institute of Technology. Media Laboratory
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.date.submission2021-11-03T16:55:31Z
mit.journal.volume15en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record