MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Language-Directed Hardware Design for Network Performance Monitoring

Author(s)
Narayana, Srinivas; Sivaraman, Anirudh; Nathan, Vikram; Goyal, Prateesh; Arun, Venkat; Alizadeh, Mohammad; Jeyakumar, Vimalkumar; Kim, Changhoon; ... Show more Show less
Thumbnail
DownloadAccepted version (1.141Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© 2017 ACM. Network performance monitoring today is restricted by existing switch support for measurement, forcing operators to rely heavily on endpoints with poor visibility into the network core. Switch vendors have added progressively more monitoring features to switches, but the current trajectory of adding specific features is unsustainable given the ever-changing demands of network operators. Instead, we ask what switch hardware primitives are required to support an expressive language of network performance questions. We believe that the resulting switch hardware design could address a wide variety of current and future performance monitoring needs. We present a performance query language, Marple, modeled on familiar functional constructs like map, filter, groupby, and zip. Marple is backed by a new programmable key-value store primitive on switch hardware. The key-value store performs flexible aggregations at line rate (e.g., a moving average of queueing latencies per flow), and scales to millions of keys. We present a Marple compiler that targets a P4-programmable software switch and a simulator for highspeed programmable switches. Marple can express switch queries that could previously run only on end hosts, while Marple queries only occupy a modest fraction of a switch's hardware resources.
Date issued
2017-08-07
URI
https://hdl.handle.net/1721.1/137272
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Publisher
ACM
Citation
Narayana, Srinivas, Sivaraman, Anirudh, Nathan, Vikram, Goyal, Prateesh, Arun, Venkat et al. 2017. "Language-Directed Hardware Design for Network Performance Monitoring."
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.