Show simple item record

dc.contributor.authorDubey, Abhimanyu
dc.contributor.authorNaik, Nikhil
dc.contributor.authorParikh, Devi
dc.contributor.authorRaskar, Ramesh
dc.contributor.authorHidalgo, César A.
dc.date.accessioned2021-11-03T18:21:59Z
dc.date.available2021-11-03T18:21:59Z
dc.date.issued2016
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.urihttps://hdl.handle.net/1721.1/137291
dc.description.abstract© Springer International Publishing AG 2016. Computer vision methods that quantify the perception of urban environment are increasingly being used to study the relationship between a city’s physical appearance and the behavior and health of its residents. Yet, the throughput of current methods is too limited to quantify the perception of cities across the world. To tackle this challenge, we introduce a new crowdsourced dataset containing 110,988 images from 56 cities, and 1,170,000 pairwise comparisons provided by 81,630 online volunteers along six perceptual attributes: safe, lively, boring, wealthy, depressing, and beautiful. Using this data, we train a Siamese-like convolutional neural architecture, which learns from a joint classification and ranking loss, to predict human judgments of pairwise image comparisons. Our results show that crowdsourcing combined with neural networks can produce urban perception data at the global scale.en_US
dc.language.isoen
dc.publisherSpringer International Publishingen_US
dc.relation.isversionof10.1007/978-3-319-46448-0_12en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleDeep Learning the City: Quantifying Urban Perception at a Global Scaleen_US
dc.typeArticleen_US
dc.identifier.citationDubey, Abhimanyu, Naik, Nikhil, Parikh, Devi, Raskar, Ramesh and Hidalgo, César A. 2016. "Deep Learning the City: Quantifying Urban Perception at a Global Scale."
dc.contributor.departmentMassachusetts Institute of Technology. Media Laboratory
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2019-07-22T18:28:38Z
dspace.date.submission2019-07-22T18:28:45Z
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record