Show simple item record

dc.contributor.authorMichaleas, Adam
dc.contributor.authorGjesteby, Lars A.
dc.contributor.authorSnyder, Michael
dc.contributor.authorChavez, David
dc.contributor.authorAsh, Meagan
dc.contributor.authorMelton, Matthew A.
dc.contributor.authorLamb, Damon G.
dc.contributor.authorBurke, Sara N.
dc.contributor.authorOtto, Kevin J.
dc.contributor.authorKamentsky, Lee
dc.contributor.authorGuan, Webster
dc.contributor.authorChung, Kwanghun
dc.contributor.authorBrattain, Laura J.
dc.date.accessioned2021-11-03T18:23:06Z
dc.date.available2021-11-03T18:23:06Z
dc.date.issued2020-09-22
dc.identifier.urihttps://hdl.handle.net/1721.1/137292
dc.description.abstract© 2020 IEEE. This paper describes a scalable active learning pipeline prototype for large-scale brain mapping that leverages high performance computing power. It enables high-throughput evaluation of algorithm results, which, after human review, are used for iterative machine learning model training. Image processing and machine learning are performed in a batch layer. Benchmark testing of image processing using pMATLAB shows that a 100x increase in throughput (10,000%) can be achieved while total processing time only increases by 9% on Xeon-G6 CPUs and by 22% on Xeon-E5 CPUs, indicating robust scalability. The images and algorithm results are provided through a serving layer to a browser-based user interface for interactive review. This pipeline has the potential to greatly reduce the manual annotation burden and improve the overall performance of machine learning-based brain mapping.en_US
dc.language.isoen
dc.publisherIEEEen_US
dc.relation.isversionof10.1109/hpec43674.2020.9286225en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleActive Learning Pipeline for Brain Mapping in a High Performance Computing Environmenten_US
dc.typeArticleen_US
dc.identifier.citationMichaleas, Adam, Gjesteby, Lars A., Snyder, Michael, Chavez, David, Ash, Meagan et al. 2020. "Active Learning Pipeline for Brain Mapping in a High Performance Computing Environment." 2020 IEEE High Performance Extreme Computing Conference, HPEC 2020.
dc.contributor.departmentLincoln Laboratory
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineering
dc.contributor.departmentPicower Institute for Learning and Memory
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Medical Engineering & Science
dc.relation.journal2020 IEEE High Performance Extreme Computing Conference, HPEC 2020en_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2021-06-08T18:34:39Z
dspace.orderedauthorsMichaleas, A; Gjesteby, LA; Snyder, M; Chavez, D; Ash, M; Melton, MA; Lamb, DG; Burke, SN; Otto, KJ; Kamentsky, L; Guan, W; Chung, K; Brattain, LJen_US
dspace.date.submission2021-06-08T18:34:40Z
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record