MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Tensor-Train-based Algorithms for Aggregate State Estimation of Swarms with Interacting Agents

Author(s)
Miculescu, David; Karaman, Sertac
Thumbnail
DownloadAccepted version (1.019Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© 2020 AACC. In this paper, we develop an efficient implementation of the gas-kinetic (GK) Probability Hypothesis Density (PHD) filter for aggregate swarm state estimation with interacting agents. We borrow a kinetic/mesoscopic partial differential equation (PDE) model of a swarm of interacting agents from biology moving in a plane with a heading state, which requires the computation of integrals up to five dimensions. In the context of the GK-PHD, we propagate this model by computing in a compressed format called the Tensor Train (TT) format, yielding better memory and runtime properties than a grid-based approach. Under certain assumptions, we prove that TT-GK-PHD has a time complexity of an order of magnitude better than the grid-based approach. Finally, we showcase the usefulness of our algorithm on a scenario which cannot be solved via the grid-based approach due to hardware memory constraints. Then in a computational experiment we demonstrate the better runtime and memory of TT-GK-PHD over the grid-based approach.
Date issued
2020-07
URI
https://hdl.handle.net/1721.1/137298
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics; Massachusetts Institute of Technology. Laboratory for Information and Decision Systems
Journal
Proceedings of the American Control Conference
Publisher
IEEE
Citation
Miculescu, David and Karaman, Sertac. 2020. "Tensor-Train-based Algorithms for Aggregate State Estimation of Swarms with Interacting Agents." Proceedings of the American Control Conference, 2020-July.
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.