MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Learned Sampling Distributions for Efficient Planning in Hybrid Geometric and Object-Level Representations

Author(s)
Liu, Katherine; Stadler, Martina; Roy, Nicholas
Thumbnail
DownloadAccepted version (1.256Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© 2020 IEEE. We would like to enable a robotic agent to quickly and intelligently find promising trajectories through structured, unknown environments. Many approaches to navigation in unknown environments are limited to considering geometric information only, which leads to myopic behavior. In this work, we show that learning a sampling distribution that incorporates both geometric information and explicit, object-level semantics for sampling-based planners enables efficient planning at longer horizons in partially-known environments. We demonstrate that our learned planner is up to 2.7 times more likely to find a plan than the baseline, and can result in up to a 16% reduction in traversal costs as calculated by linear regression. We also show promising qualitative results on real-world data.
Date issued
2020-09
URI
https://hdl.handle.net/1721.1/137313
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Journal
Proceedings - IEEE International Conference on Robotics and Automation
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Liu, Katherine, Stadler, Martina and Roy, Nicholas. 2020. "Learned Sampling Distributions for Efficient Planning in Hybrid Geometric and Object-Level Representations." Proceedings - IEEE International Conference on Robotics and Automation.
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.