MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Generalized physics-informed learning through language-wide differentiable programming

Author(s)
Rackauckas, C; Edelman, A; Fischer, K; Innes, M; Saba, E; Shah, VB; Tebbutt, W; ... Show more Show less
Thumbnail
DownloadPublished version (532.5Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Copyright © 2020, for this paper by its authors. Scientific computing is increasingly incorporating the advancements in machine learning to allow for data-driven physics-informed modeling approaches. However, re-targeting existing scientific computing workloads to machine learning frameworks is both costly and limiting, as scientific simulations tend to use the full feature set of a general purpose programming language. In this manuscript we develop an infrastructure for incorporating deep learning into existing scientific computing code through Differentiable Programming (∂P). We describe a ∂P system that is able to take gradients of full Julia programs, making Automatic Differentiation a first class language feature and compatibility with deep learning pervasive. Our system utilizes the one-language nature of Julia package development to augment the existing package ecosystem with deep learning, supporting almost all language constructs (control flow, recursion, mutation, etc.) while generating high-performance code without requiring any user intervention or refactoring to stage computations. We showcase several examples of physics-informed learning which directly utilizes this extension to existing simulation code: neural surrogate models, machine learning on simulated quantum hardware, and data-driven stochastic dynamical model discovery with neural stochastic differential equations.
URI
https://hdl.handle.net/1721.1/137320
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
CEUR Workshop Proceedings
Citation
Rackauckas, C, Edelman, A, Fischer, K, Innes, M, Saba, E et al. "Generalized physics-informed learning through language-wide differentiable programming." CEUR Workshop Proceedings, 2587.
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.