MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Machine Learning in High Energy Physics Community White Paper

Author(s)
Albertsson, Kim; Altoe, Piero; Anderson, Dustin; Andrews, Michael; Araque Espinosa, Juan Pedro; Aurisano, Adam; Basara, Laurent; Bevan, Adrian; Bhimji, Wahid; Bonacorsi, Daniele; Calafiura, Paolo; Campanelli, Mario; Capps, Louis; Carminati, Federico; Carrazza, Stefano; Childers, Taylor; Coniavitis, Elias; Cranmer, Kyle; David, Claire; Davis, Douglas; Duarte, Javier; Erdmann, Martin; Eschle, Jonas; Farbin, Amir; Feickert, Matthew; Castro, Nuno Filipe; Fitzpatrick, Conor; Floris, Michele; Forti, Alessandra; Garra-Tico, Jordi; Gemmler, Jochen; Girone, Maria; Glaysher, Paul; Gleyzer, Sergei; Gligorov, Vladimir; Golling, Tobias; Graw, Jonas; Gray, Lindsey; Greenwood, Dick; Hacker, Thomas; Harvey, John; Hegner, Benedikt; Heinrich, Lukas; Hooberman, Ben; Junggeburth, Johannes; Kagan, Michael; Kane, Meghan; Kanishchev, Konstantin; Karpiński, Przemysław; Kassabov, Zahari; Kaul, Gaurav; Kcira, Dorian; Keck, Thomas; Klimentov, Alexei; Kowalkowski, Jim; Kreczko, Luke; Kurepin, Alexander; Kutschke, Rob; Kuznetsov, Valentin; Köhler, Nicolas; Lakomov, Igor; Lannon, Kevin; Lassnig, Mario; Limosani, Antonio; Louppe, Gilles; Mangu, Aashrita; Mato, Pere; Meinhard, Helge; Menasce, Dario; Moneta, Lorenzo; Moortgat, Seth; Narain, Meenakshi; Neubauer, Mark; Newman, Harvey; Pabst, Hans; Paganini, Michela; Paulini, Manfred; Perdue, Gabriel; Perez, Uzziel; Picazio, Attilio; Pivarski, Jim; Prosper, Harrison; Psihas, Fernanda; Radovic, Alexander; Reece, Ryan; Rinkevicius, Aurelius; Rodrigues, Eduardo; Rorie, Jamal; Rousseau, David; Sauers, Aaron; Schramm, Steven; Schwartzman, Ariel; Severini, Horst; Seyfert, Paul; Siroky, Filip; Skazytkin, Konstantin; Sokoloff, Mike; Stewart, Graeme; Stienen, Bob; Stockdale, Ian; Strong, Giles; Thais, Savannah; Tomko, Karen; Upfal, Eli; Usai, Emanuele; Ustyuzhanin, Andrey; Vala, Martin; Vallecorsa, Sofia; Vasel, Justin; Verzetti, Mauro; Vilasís-Cardona, Xavier; Vlimant, Jean-Roch; Vukotic, Ilija; Wang, Sean-Jiun; Watts, Gordon; Williams, Michael; Wu, Wenjing; Wunsch, Stefan; Zapata, Omar; ... Show more Show less
Thumbnail
DownloadPublished version (682.4Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 3.0 unported license https://creativecommons.org/licenses/by/3.0/
Metadata
Show full item record
Abstract
© Published under licence by IOP Publishing Ltd. Machine learning is an important applied research area in particle physics, beginning with applications to high-level physics analysis in the 1990s and 2000s, followed by an explosion of applications in particle and event identification and reconstruction in the 2010s. In this document we discuss promising future research and development areas in machine learning in particle physics with a roadmap for their implementation, software and hardware resource requirements, collaborative initiatives with the data science community, academia and industry, and training the particle physics community in data science. The main objective of the document is to connect and motivate these areas of research and development with the physics drivers of the High-Luminosity Large Hadron Collider and future neutrino experiments and identify the resource needs for their implementation. Additionally we identify areas where collaboration with external communities will be of great benefit.
Date issued
2018-09
URI
https://hdl.handle.net/1721.1/137324
Department
Massachusetts Institute of Technology. Department of Physics
Journal
Journal of Physics: Conference Series
Publisher
IOP Publishing
Citation
Albertsson, Kim, Altoe, Piero, Anderson, Dustin, Andrews, Michael, Araque Espinosa, Juan Pedro et al. 2018. "Machine Learning in High Energy Physics Community White Paper." Journal of Physics: Conference Series, 1085 (2).
Version: Final published version
ISSN
1742-6588
1742-6596

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.