Show simple item record

dc.contributor.authorKim, Joseph
dc.contributor.authorMuise, Christian
dc.contributor.authorShah, Ankit Jayesh
dc.contributor.authorAgarwal, Shubham
dc.contributor.authorShah, Julie A
dc.date.accessioned2021-11-04T13:51:00Z
dc.date.available2021-11-04T13:51:00Z
dc.date.issued2019
dc.identifier.urihttps://hdl.handle.net/1721.1/137327
dc.description.abstract© 2019 International Joint Conferences on Artificial Intelligence. All rights reserved. Temporal logics are useful for providing concise descriptions of system behavior, and have been successfully used as a language for goal definitions in task planning. Prior works on inferring temporal logic specifications have focused on “summarizing” the input dataset - i.e., finding specifications that are satisfied by all plan traces belonging to the given set. In this paper, we examine the problem of inferring specifications that describe temporal differences between two sets of plan traces. We formalize the concept of providing such contrastive explanations, then present BayesLTL - a Bayesian probabilistic model for inferring contrastive explanations as linear temporal logic (LTL) specifications. We demonstrate the robustness and scalability of our model for inferring accurate specifications from noisy data and across various benchmark planning domains.en_US
dc.language.isoen
dc.publisherInternational Joint Conferences on Artificial Intelligenceen_US
dc.relation.isversionofhttp://dx.doi.org/10.24963/IJCAI.2019/776en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleBayesian Inference of Linear Temporal Logic Specifications for Contrastive Explanationsen_US
dc.typeArticleen_US
dc.identifier.citationKim, Joseph, Muise, Christian, Shah, Ankit Jayesh, Agarwal, Shubham and Shah, Julie A. 2019. "Bayesian Inference of Linear Temporal Logic Specifications for Contrastive Explanations." IJCAI International Joint Conference on Artificial Intelligence, 2019-August.
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMIT-IBM Watson AI Laben_US
dc.relation.journalIJCAI International Joint Conference on Artificial Intelligenceen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2021-05-04T13:52:13Z
dspace.orderedauthorsKim, J; Muise, C; Shah, A; Agarwal, S; Shah, Jen_US
dspace.date.submission2021-05-04T13:52:14Z
mit.journal.volume2019-Augusten_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusPublication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record