Show simple item record

dc.contributor.authorDai, Siyu
dc.contributor.authorSchaffert, Shawn
dc.contributor.authorJasour, Ashkan
dc.contributor.authorHofmann, Andreas
dc.contributor.authorWilliams, Brian C
dc.date.accessioned2021-11-04T14:59:04Z
dc.date.available2021-11-04T14:59:04Z
dc.date.issued2019-08
dc.identifier.urihttps://hdl.handle.net/1721.1/137338
dc.description.abstract© 2019 IEEE. This paper introduces Probabilistic Chekov (p-Chekov), a chance-constrained motion planning system that can be applied to high degree-of-freedom (DOF) robots under motion uncertainty and imperfect state information. Given process and observation noise models, it can find feasible trajectories which satisfy a user-specified bound over the probability of collision. Leveraging our previous work in deterministic motion planning which integrated trajectory optimization into a sparse roadmap framework, p-Chekov shows superiority in its planning speed for high-dimensional tasks. P-Chekov incorporates a linear-quadratic Gaussian motion planning approach into the estimation of the robot state probability distribution, applies quadrature theories to waypoint collision risk estimation, and adapts risk allocation approaches to assign allowable probabilities of failure among waypoints. Unlike other existing risk-aware planners, p-Chekov can be applied to high-DOF robotic planning tasks without the convexification of the environment. The experiment results in this paper show that this p-Chekov system can effectively reduce collision risk and satisfy user-specified chance constraints in typical real-world planning scenarios for high-DOF robots.en_US
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/ICRA.2019.8793660en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleChance Constrained Motion Planning for High-Dimensional Robotsen_US
dc.typeArticleen_US
dc.identifier.citationDai, Siyu, Schaffert, Shawn, Jasour, Ashkan, Hofmann, Andreas and Williams, Brian C. 2019. "Chance Constrained Motion Planning for High-Dimensional Robots." Proceedings - IEEE International Conference on Robotics and Automation, 2019-May.
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.relation.journalProceedings - IEEE International Conference on Robotics and Automationen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2021-05-05T12:39:29Z
dspace.orderedauthorsDai, S; Schaffert, S; Jasour, A; Hofmann, A; Williams, Ben_US
dspace.date.submission2021-05-05T12:39:32Z
mit.journal.volume2019-Mayen_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusPublication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record